

September 2019

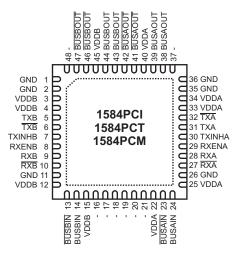
HI-1584

MIL-STD-1553 / 1760 3.3V Monolithic Dual Transceiver

DESCRIPTION

The HI-1584 is an ultra-low power CMOS dual transceiver designed to meet the requirements of the MIL-STD-1553 and MIL-STD-1760 specifications.

The transmitter section of each bus takes complementary CMOS / TTL Manchester II bi-phase data and converts it to differential voltages suitable for driving the bus isolation transformer. Separate transmitter inhibit control signals are provided for each transmitter.


The receiver section of the each bus converts the 1553 bus bi-phase analog signals to complementary CMOS / TTL data suitable for input to a Manchester decoder. Each receiver has a separate enable input, which forces the receiver outputs to logic "0".

The HI-1584 is housed in a small-footprint, 7 x 7 mm 48-pin plastic chip-scale package (QFN) and is a drop-in replacement for the Data Device Corporation BU-67401L0C0x-102 transceiver.

FEATURES

- Compliant to MIL-STD-1553A and B, MIL-STD-1760 and ARINC 708A
- 3.3V single supply operation
- Smallest footprint available in 7mm x 7mm 48 pin plastic chip-scale package (QFN)
- Industrial and extended temperature ranges
- Drop-in alternative to BU-67401L0C0x-102

PIN CONFIGURATION

48 Pin Plastic 7mm x 7mm Chip-Scale Package (QFN)

APPLICATIONS

- MIL-STD-1553 Terminals
- Flight Control and Monitoring
- Radar Systems
- ECCM Interfaces
- Stores Management
- Test Equipment
- Sensor Interfaces
- Instrumentation

PIN DESCRIPTIONS

PIN	SYMBOL	FUNCTION	DESCRIPTION
1	GND	power supply	Ground
2	GND	power supply	Ground
3	VDDB	power supply	+3.3 volt power for transceiver B
4	VDDB	power supply	+3.3 volt power for transceiver B
5	ТХВ	digital input	Transmitter B digital data input, non-inverted
6	TXB	digital input	Transmitter B digital data input, inverted
7	TXINHB	digital input	Transmit inhibit, bus B. If high BUSBOUT, BUSBOUT disabled
8	RXENB	digital input	Receiver B enable. If low, forces RXB and RXB low
9	RXB	digital output	Receiver B output, non-inverted
10	RXB	digital output	Receiver B output, inverted
11	GND	power supply	Ground
12	VDDB	power supply	+3.3 volt power for transceiver B
13	BUSBIN	analog input	MIL-STD-1553 bus input B, negative signal
14	BUSBIN	analog input	MIL-STD-1553 bus input B, positive signal
15	VDDB	power supply	+3.3 volt power for transceiver B
16	-	-	Not connected
17	-	-	Not connected
18	-	-	Not connected
19	-	-	Not connected
20	-	-	Not connected
21	-	-	Not connected
22	VDDA	power supply	+3.3 volt power for transceiver A
23	BUSAIN	analog input	MIL-STD-1553 bus input A, negative signal
24	BUSAIN	analog input	MIL-STD-1553 bus input A, positive signal
25	VDDA	power supply	+3.3 volt power for transceiver A
26	GND	power supply	Ground
27	RXA	digital output	Receiver A output, inverted
28	RXA	digital output	Receiver A output, non-inverted
29	RXENA	digital input	Receiver A enable. If low, forces RXA and RXA low
30	TXINHA	digital input	Transmit inhibit, bus A. If high BUSAOUT, BUSAOUT disabled
31	TXA	digital input	Transmitter A digital data input, non-inverted
32	TXA	digital input	Transmitter A digital data input, inverted
33	VDDA	power supply	+3.3 volt power for transceiver A
34	VDDA	power supply	+3.3 volt power for transceiver A
35	GND	power supply	Ground
36	GND	power supply	Ground
37	-	-	Not connected
38	BUSAOUT	analog output	MIL-STD-1553 bus driver A, positive signal
39	BUSAOUT	analog output	MIL-STD-1553 bus driver A, positive signal
40	VDDA	power supply	+3.3 volt power for transceiver A
41	BUSAOUT	analog output	MIL-STD-1553 bus driver A, negative signal
42	BUSAOUT	analog output	MIL-STD-1553 bus driver A, negative signal
43	BUSBOUT	analog output	MIL-STD-1553 bus driver B, positive signal
44	BUSBOUT	analog output	MIL-STD-1553 bus driver B, positive signal
45	VDDB	power supply	+3.3 volt power for transceiver B
46	BUSBOUT	analog output	MIL-STD-1553 bus driver B, negative signal
47	BUSBOUT	analog output	MIL-STD-1553 bus driver B, negative signal
48	-	-	Not connected

HOLT INTEGRATED CIRCUITS 2

FUNCTIONAL DESCRIPTION

The HI-1584 dual data bus transceiver contains differential voltage source drivers and differential receivers. It is intended for applications using a MIL-STD-1553 A/B data bus. The device produces a trapezoidal output waveform during transmission.

TRANSMITTER

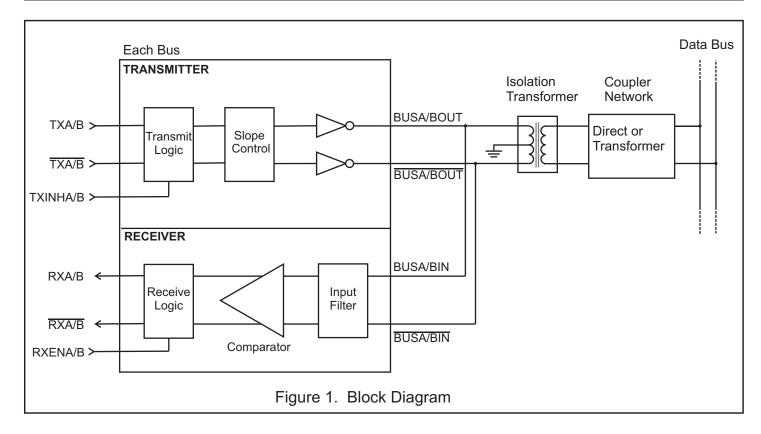
Data input to the device's transmitter section is from the complementary CMOS inputs TXA/B and TXA/B. The transmitter accepts Manchester II bi-phase data and converts it to differential voltages on BUSAOUT/BUSAOUT and BUSBOUT/BUSBOUT. The transceiver outputs are either direct- or transformer-coupled to the MIL-STD-1553 data bus. Both coupling methods produce a nominal voltage on the bus of 7.5 volts peak to peak.

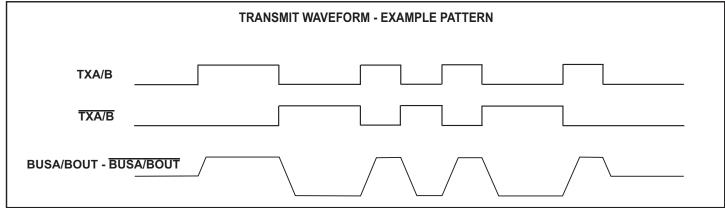
The transmitter is automatically inhibited and placed in the high impedance state when both TXA/B and $\overline{TXA}/\overline{B}$ are driven with the same logic state. A logic "1" applied to the TXINHA/B input forces the transmitter to the high impedance state, regardless of the state of TXA/B and $\overline{TXA}/\overline{B}$.

RECEIVER

The receiver accepts bi-phase differential data from the MIL-STD-1553 bus through the same direct- or transformer-coupled interface at the BUSAIN/BUSAIN or BUSBIN/BUSBIN pads. The receiver's differential input stage drives a filter and threshold comparator to produce CMOS data at the RXA/B and RXA/B output pins. When the MIL-STD-1553 bus is idle and RXENA or RXENB are high, RXA/B will be logic "0".

The receiver outputs are forced to the bus idle state (logic "0") when RXENA or RXENB is low.


MIL-STD-1553 BUS INTERFACE


A direct-coupled interface (see Figure 2) uses a 1:2.65 turnsratio isolation transformer and two 55 ohm isolation resistors between the transformer and the bus. The primary center-tap of the isolation transformer must be connected to GND.

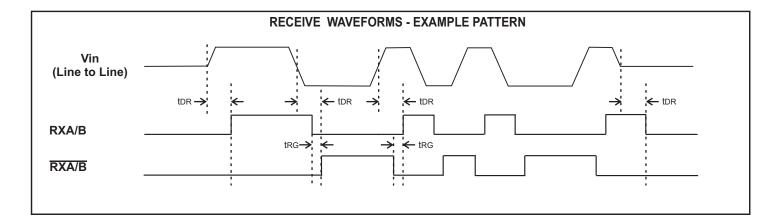

In a transformer-coupled interface (see Figure 2), the transceiver is connected to a 1:2.07 turns-ratio isolation transformer which is connected to the main bus using a 1:1.4 coupling transformer. The transformer coupled method also requires two coupling resistors equal to 75% of the bus characteristic impedance (Zo) between the coupling transformer and the bus.

Figure 3 and Figure 4 show test circuits for measuring electrical characteristics of both direct- and transformercoupled interfaces respectively. (See electrical characteristics on the following pages).

HI-1584

HOLT INTEGRATED CIRCUITS 4

ABSOLUTE MAXIMUM RATINGS

Supply voltage (VDD)	-0.3 V to +4.5 V
Logic input voltage range	-0.3 Vdc to VDD + 0.3 V
Receiver differential voltage	50 Vр-р
Driver peak output current	+1.0 A
Power dissipation at 25°C	1.0 W
Reflow Solder Temperature	260°C
Junction Temperature	175°C
Storage Temperature	-65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

Supply Voltage	
VDD	3.3V ±5%
Temperature Range	
	10001 0500

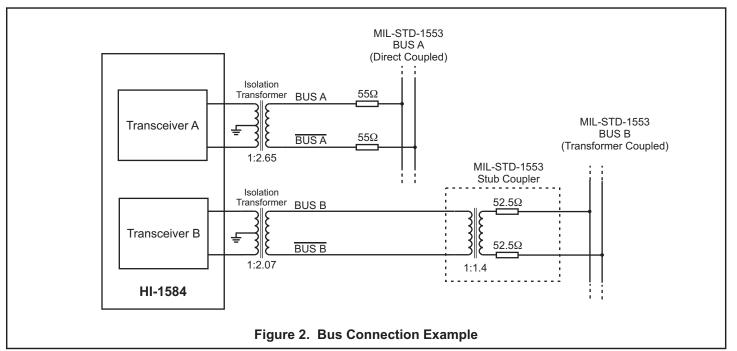
NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

DC ELECTRICAL CHARACTERISTICS

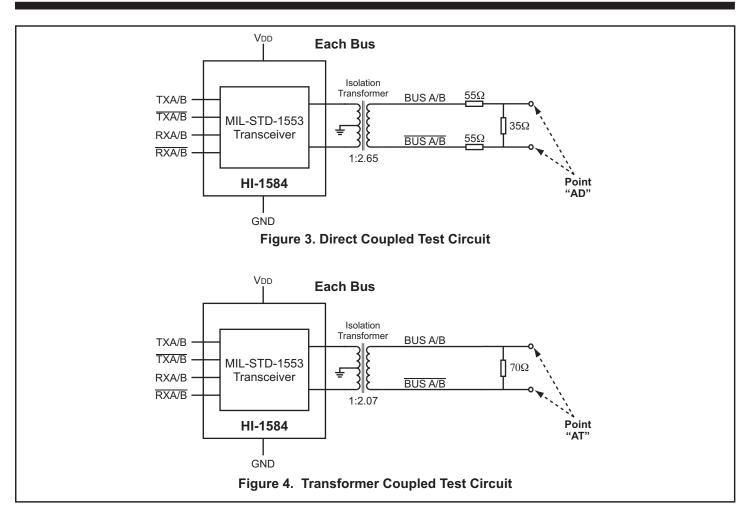
VDD = 3.14 V to 3.46V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Operating Voltage	Vdd		3.14	3.30	3.46	V
Total Supply Current	Icc1	Not Transmitting		50	65	mA
	Icc2	Transmit one bus @ 50% duty cycle		300	320	mA
	Іссз	Transmit one bus @ 100% duty cycle		625	675	mA
Power Dissipation	PD1	Not Transmitting		0.1	0.14	W
	PD ²	Transmit one bus @ 100% duty cycle		0.85	0.98	w
Min. Input Voltage (High)	Viн	Digital inputs	70%			Vdd
Max. Input Voltage (Low)	Vil	Digital inputs			30%	VDD
Min. Input Current (High)	Ін	Digital inputs			20	μA
Max. Input Current (Low)	lı∟	Digital inputs	-20			μA
Min. Output Voltage (High)	Vон	louτ = -1.0mA, Digital outputs	90%			VDD
Max. Output Voltage (Low)	Vol	louτ = 1.0mA, Digital outputs			10%	VDD
RECEIVER (Measured at Point "Ap" in	Figure 3 unles	s otherwise specified)				
Input resistance	Rin	Differential (at chip pins)	5			Kohm
Input capacitance	CIN	Differential			5	pF
Common mode rejection ratio	CMRR		40			dB
Input common mode voltage	VICM		-10.0		10.0	V-pk
Threshold Voltage - Direct-coupled Detect	Vthd	1 MHz Sine Wave Measured at Point "Ab" in Figure 3 RXA/B, RXA/B pulse width >70 ns	1.15			Vp-p
No Detect	Vthnd	No pulse at RXA/B, RXA/B			0.28	Vp-p
Theshold Voltage - Transformer-coupled Detect	Vthd	1 MHz Sine Wave Measured at Point "Aт" in Figure 4 RXA/B, RXA/B pulse width >70 ns	0.86			Vp-р
No Detect	Vthnd	No pulse at RXA/B, RXA/B			0.20	Vp-p

DC ELECTRICAL CHARACTERISTICS (cont.)


VDD = 3.14 V to 3.46 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

	PARAMETER	SYMBOL	CONDITION	MIN	ТҮР	MAX	UNITS
TRANSMITTER	(Measured at Point "AD" in Fi	gure 3 unless	otherwise specified)				
Output Voltage	Direct coupled	Vout	35 ohm load (Measured at Point "Aɒ" in Figure 3)	6.0		9.0	Vp-p
	Transformer coupled	Vout	70 ohm load (Measured at Point "Ατ" in Figure 4)	20.0		27.0	Vp-p
Output Noise		Von	Differential, inhibited			10.0	mVp-p
Output Dynamic O	ffset Voltage Direct coupled	Vdyn	35 ohm load (Measured at Point "Aɒ" in Figure 3)	-90		90	mV
	Transformer coupled	Vdyn	70 ohm load (Measured at Point "Ατ" in Figure 4)	-250		250	mV
Output Capacitanc	ce	Соит	1 MHz sine wave			15	pF


AC ELECTRICAL CHARACTERISTICS

VDD = 3.14 V to 3.46 V, GND = 0V, TA =Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER (Measured a	at Point "A⊤" i	n Figure 4 unless otherwise specified)				·
Receiver Delay	tDR	From input zero crossing to RXA/B			450	ns
		or RXA/B				
Receiver gap time	trg	Spacing between RXA/B	90		365	ns
		and RXA/B pulses.				
		1 MHz sine wave applied at point "AT" Figure 4,				
		amplitude range 0.86 Vp-p to 27.0Vp-p				
Receiver Enable Delay	tren	From RXENA/B rising or falling edge to			40	ns
		RXA/B or RXA/B			40	115
TRANSMITTER (Measured a	at Point "AT" i	in Figure 4)				
Driver Delay	tdт	TXA/B, TXA/B to BUSA/BOUT, BUSA/BOUT			150	ns
Rise time	tr	70 ohm load	100		300	ns
Fall Time	tf	70 ohm load	100		300	ns
Inhibit Delay	tDI-H	Inhibited output			100	ns
	tDI-L	Active output			150	ns

HI-1584

HEAT SINK

The HI-1584PCI/T/M uses a plastic chip-scale package (QFN). These packages include a metal heat sink located on the bottom surface of the device. This heat sink may be soldered down to the printed circuit board for optimum thermal dissipation. The heat sink is electrically isolated and may be soldered to any convenient power or ground plane.

APPLICATIONS NOTE

Holt Applications Note AN-500 provides circuit design notes regarding the use of Holt's family of MIL-STD-1553 transceivers. Layout considerations, as well as recommended interface and protection components are included.

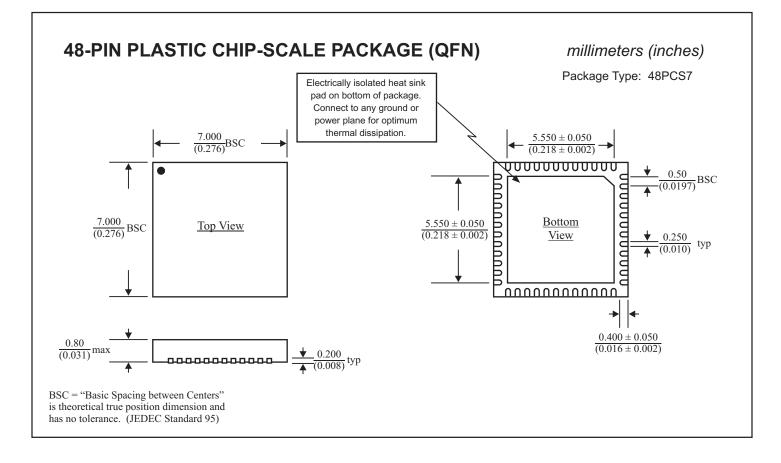
ORDERING INFORMATION

HI - <u>1584</u> <u>PC x</u> <u>F</u>

				_
PART NUMBER	LEAD FINISH			
F	NiPdAu (Pb-free	RoHS complia	ant)	
PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN	
I	-40°C TO +85°C	I	No	
Т	-55°C TO +125°C	Т	No	
М	-55°C TO +125°C	М	Yes	
 PART NUMBER	PACKAGE DESCRIPTION			
PC	48 PIN PLASTIC C	HIP-SCALE F	PACKAGE C	QFN (48PCS7)

RECOMMENDED TRANSFORMERS

The HI-1584 transceiver has been characterized for compliance with the electrical requirements of MIL-STD-1553 when used with the following transformers. Holt


recommends Premier Magnetics parts as offering the best combination of electrical performance, low cost and small footprint.

MANUFACTURER	PART NUMBER	APPLICATION	TURNS RATIO	DIMENSIONS
Premier Magnetics	PM-DB2779	Isolation	Dual 1:2.65 / 1:2.07	.675 x .400 x .185 inches
Premier Magnetics	PM-DB2702	Stub coupling	1:1.4	.625 x .625 x .250 inches

REVISION HISTORY

Document	Rev.	Date	Description of Change
DS1584	New	12/08/15	Initial Release.
	А	02/06/17	Remove Thermal Characteristics Table (refer to web). Update Total Supply Current (Not transmitting) parameter in DC Characteristics Table. Correct other minor typos.
	В	06/05/17	Update Power Dissipation and Power Supply Current parameters.
	С	08/24/17	Remove Power Dissipation bullet from Features.
	D	04/16/19	Update Supply Voltage and Logic Input Voltage Range in Absolute Maximum Ratings Table.
	Е	09/20/19	Update Total Supply Current (ICC1) parameter in DC Electrical Characteristics table.

HOLT INTEGRATED CIRCUITS

